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ABSTACT

Due to the advances in the integrated circuit (IC) technology, more and

more components are being fabricated into a tiny IC chip. Since the numer of

pins on each chip is limited by the physical size of the chip, the problem of

testing becomes more difficult than ever, especially in the VLSI (Very Large .-

Scale Integration) chips. This problem is aggravated by the fact that, in

nearly all cases, integrated circuit manufacturers are not willing to release

the detailed circuit diagram of the IC chip to the users. Yet, as users of the

IC chips, to male sure that the implemented system is reliable, we need to test

the IC chips and the systems made of the interconnection of these chips. The

purpose of this project is to find efficient algorithms for testing LSI/VLSI

chips and LSI/VLSI-based systems.---

-This report is organized into two chapters. Chapter 1 presents the

state-of-the-art for the functional testing of LSI/VLSI devices with special

emphasis on microprocessor testing. Various types of IC chips are briefly

discussed. Different approaches for sting the functional faults of LSI/VLSI

are surveyed and the comparison of these methods are given. Fault models for v.-

representing the faults and fault coverage of the tests are discussed. Some of
the important unsolved problems and current trends in testing VLSI are pointed

* out.

Chapter 2 reports our new research results. We present three algorithms to

test the instruction decoding function of microprocessors. The algorithms are

based on the knowledge of some timing and control information available to users /

through microprocessor manuals and data sheets. The tests are functional in /

nature. We establish the order of complexity of the algorithms presented In

this report. As an example, the test complexity for a microprocessor is

*4 [ computed and the results are compared with a Imown algorithm. .

4..%,
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a CHAPTER 1

'a Overview of Recent Development in Functional Testing

of LSI/VLSI Devices

I. INROUCTION

The rapid growth of the integrated circuit technology has allomed LSI/VLSI

devices to provide more powerful functions and to become more and more popular .'

in various kinds of commercial, industrial and military applications. These

complex devices need to be tested for correctness and guaranteed reliability

before being adopted in an individual application. What males the situations

even harder than before is that due to the increasing complexity during the

design and manufacturing process of such chis, the testing problem becom4s much

more difficult to handle. In view of the high complexity of VLSI, classical

statei. 7 for gate-level stuck-type testing can hardly fit well. The need for

both manufacturer and user to find reliable, low-cost, good testing tec."niques

has already become a major problem in modern technology.

Although the manufacturers have detailed knowledge of +_he logical and

parametric behavior of the chips produced, they usually do not apply

comprehensive, thorough testing to their products mainly due to economic

-. rasons. To assure reliable operations, additional testing needs to be

aperformed by the users. Users may have as many as three different testing

environments -- ad hoc functional testing by a simple test circuit, assembling .

production test, and occasional field testing. As a matter of fact, due to the

Increasing number of LSI/VLSI users, it is becoming evident and more important

that we develop good test generation algorithms to test these devices basei on

whatever information is available to users in manufacturers' data books and

aoplication notes.

A.. ..... .. ... ... ......... . .. . ...... ... .
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In general, we should consider not only testing the conventional -. •,*.

self-contained single chip devices (e.g., single chip microprocessor), but also

testing other special-purpose devices (e.g., bit-sliced microprocessor),

especially in military applications (161. *'i"

It is likely, with the evolutionary development of functions contained in

newly produced chips, that much more complex and sophisticated test strategy

will be needed in addition to whatever built-in testing hardware in the ships

for increasing the testability.

DurLig recent years certain kinds of techniques have been proposed in

testing LSI/VLSI devices. They all have attempted to derive comprehensive

functional tests using the limited information to users. To deal with the
" ,"p

complexity of VLSI circuits in a comprehensive fashion, these approaches have

used dbstract, formal descriptions of VLSI behavior different from traditional

test approaches.

Some thstiag approaches developed so far are based on the utilization of

the concept oz register transfer language (RTL) to describe the behavior of the

devices. With the advent of the more advanced VLSI devices (e.g., the 4-th '"
generation microprocessors) in which certain RTL operations in the system may be

hidden from the user, it is obvious that either the existing test methods should

Ue modified or different but similar strategies must be exploited. -

In this chapter we attempt to summarize the current state-of-the-art on the , .

development of functional test techniques for LSI/VLSI devices with special

ephasis 0on the important area of microprocessor testing. The second section

briefly discusses the types of LSI/VLISI chips from a general system .

o~ranizational point of view and their individual testing approaches. Section

three states the general state of the art in functional testing strategies.

-el J. _N S
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Section four describes fault models and coverage measures. The effectiveness of

a test approach is evaluated based on the percentage of fault covered by the

tests it can achieve. Section five summarizes major functional testing

approaches in the current literature and a simple comparison is made among them

ii Section six. The last Section includes some work which remains to be

explored in this field and some future trends.

II. TYfPES OF ISIMlS! Q-IPS AND THEIR TESTING

In 3eneral, the LSI/VLSI chips available to users can be categorized from

the system organizational point of view as the following four types:

.Microprocessors

* Memory chips

* Peripheral supporting chips

0 Special-purpose functional chips

Microprocessors are usually utilized as the processing control unit of

application systems and usually have the highest functional complexity among

those four types. Peripheral supporting chips include those chips which perform

interfaces and inter-module communications. They usually nave limited specific.

functions imbedded within themselves and can be activated under program control.

The memory chips are used only for progrm or data storage purpose; therefore,

they usually receive the least emphasis in fractional .esting due to their low

i fnctional complexity., A lot of work has eem done in the area of static

functional testing of LSI semiconductor mt..ories [18]. The special-purpose

functional chips include those devices designed for speedy execution of certain

lunctions (e.g., hardwre multiplier, fast fourier tr3nsform and so on).

As we mentioned earlier, isers must assure the reliable operations Of

?urchased LSI/VLSI chips. This usually left them with seversl uncom.forole

Rol. 3
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alternatives. One simple alternative people often adopted in testing
microprocessors is to purchase a set of test vectors from the vendor and use

them to test the purchased chips. However, such ad hoc analyses usually have

only been made on the chips and therefore are not made on the basis of a

theoretical model with provable comprehensiveness. Another possible approach is

to run a pseudorandom test sequence of test vectors for simplicity and minimum
0.

cost; but, to derive reliable measures of fault coverage using this method is a

nondeterministic problem. Actually, the reasonable way to test microprocessors

is to use those techniques attempting to derive high fault coverage functional

test programs using the limited information available to users (e.g., those

contained in user's manuals). Formal, abstract descriptions of processor

behaviors are used to enable the proof of comprehensiveness.

To attack the high functional complexity of microprocessors, modular

dlecomposition techniques are usually used to subdivide the microprocessor into

functional modules whose behaviors could be individually verified using

appropriate test procedures. Two situations may often be observed in testing

microprocessors:

1) Testing is focused on data path functions. The fault types of

ccntrol path is usually simplified.

2) Modules and tests are developed on an ad hoc basis. [71 '.;

The order of test sequence is of major concern during the testing of

iaicroprocessors. Basically, a partial or total order is looked for to determine ,

one viay appropriate for testing the instructions. This order is usually derived

from the relations of dominance and associated parameters which may be

structural or functional. Two well-known test organimtions can be applied:

the start small and the start big method. The start small method tests only a

4v~- .~.- .C~ ~ -~. ~ -:-. -~- ~---~ '' *'"-W*'-
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small portion of hardware and then. uses the tested part to detect the fault in

other parts. Each additional test adds a small quantity of hardware to the

previously tested parts until all are tested. This method requires an ordering

among the set of instructions with respect to testing. The start big test

starts with the verification of the whole system to determine which part is

faulty and proceeds to sequentially narrow down the region in which the fault

occurs. %'

The testing of memory chips only concerns with read and write processes of

the individual storage elements and can usually be done by various memory

testing strategies [18]. Further advanced testing of real world memory faults V

(e.g., intermittent and data dependent faults) are still worthwhile in practical

applications ,hich require high reliability.

III. THE STAM OF T- ART OF TESTN{G

There are mainly two trends in the test methods for LSI/VLSI devices. The ,

first one is functional testing wnich generally views the chip-under-test as a

system. For example, if a microprocessor is being tested, the knowledge of the

ncti~r~al IODCK dia.,ran allows the microprocessor to be divided into physical

blocks sucn as arit.hmetic logic Lnit, control unit and so on. Each block is

-rara- , 'ried by its function. Testing a microprocessor then consists of

exer-ising every block with specified test data in a given order. In general,

test data can be one of the following:

1) Generated in random order.-%

2) Generated in a deterministic manner, usually a model is set up based

on a ftign ,evel functional description.

3) Exhaustively generated.

The second method is structural testing which assumes (as its name
%.'
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suggests) that a knowledge of the detailed structure of the circuit is clearly .'.-

known. The difficulties which arise when applying this kind of test method are:
I 4o .

. The lack of knowledge about the physical defects which can be present

in the new technologies, and

& Due to the complexity of VLSI, it is very complex to entumerate all

I, faults and to generate the tests for them.

- In practice, there is only a small possibility for a component user

to know toe detailed structure of the device-under-use, especially

S. for LSI/VLSI devices.

A good test approach usually considers- both functional and structural

failures. Functional testing can be performed while taking into account the

knowledge of tI structural information to obtain enhanced test efficiency.

IV FAULT MODELS AND FAULT COVEAG MASURS"

To simplify the evaluation of the fault coverage in digital systems, a

comprehensive fault model is usually set up and then the fault coverage is %

evaluated based on this model. One interesting iay to set up the functional

level fault model of digital devices other than microprocessor (e.g., VLSI, PLA)

is the fault characterization technique [14]. The key idea is to derive the

functional level fault model by simulating physical failures at tiv circuit

level. Although this approach has primarily two limitations of being

9 implementation dependent and being hard to attack complex VLSI modules, the -
-. °,

latter problem can be solved by employing a two-step ethod simulating the large

module based on small modules and multi-valued algebra [14].

There are two kinds of fault models for the testing of microprocessors.

One is called the universal fault model which takes all possible faults into

account and no faults are specific to any functions (but may be specific to

6 '
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instructions/micro-inistructions). The other is called functional fault model

which partitions faults into several types according to different functions.

The microprocessor testing approach [12] based on microprogramming concept uses

the universal fault model, whereas the graph theoretic method [2] adopts the

functional fault model.

In general, fault coverage is defined as the ratio of faults detected to

the set of all faults considered. For simplicity it is also defined as the

fraction of all singly-occuring faults which can be detected by a given set of .,...

test vectors for a specific device. For simplification, only the permanent

static faults are considered in most fault measures in current testing

techniques (9]. The evaluation of fault coverage data is usually done by

simulation through softvare. Essentially, the simulator models the responses of

n+1 circuits: the fault-free circuit and the n single-fault circuits. The

fault simulator results are often only approximations to those actually observed

during actual circuit testing. This is true even if the simulator modelled all
reasonable types of faults. .. "

V. CURRENr FUNCTIONAL TESTING APPROACF•S

In this section, first of all, we describe three major approaches for

functional testing of microprocessors [1,2,3,4,12,13].

(a) Graph Theoretic Approaches

There are two different techniques proposed in this category. In [1], each

instruction of a microprocessor is represented by an "abstract execution graph"

in which memory elements, including source and destination registers, are

represented as circle-shape tyce-1 nodes, and t1.e microoperations performed by

the instruction are represented as scuare-shape type-2 nodes. An example of

"ADDA n,X" frcm the MC6800 microprocessor is given in Fig 1. This instruction

7
14
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first computes the effective address by adding n to X, using this effective

- ~address for fetching the ope~rand. Then the operand is added to register A and .\

store the sum in register A.

n X

Effective
Address+
Calculation

Mem

Operand
M-emory Fetch
Fetch

'4A

Arithmetic
Addition

Figure 1

* Two strategies, both start small and start big strategy can be used in

* . enerating* test procedures. The start small testing is implemented by testing

itistructions from ci before instructions from class c, +1, where i denotes the

-order of the class. To make the testing automated and canplete, two stages of

test are involved: first, verifying the structure of tte abstract ey-cution .

g.raph, and then verifying the correct function of each node. Memory elem:wents

* are checked by running appropriate test patterns and every -nic-roopraticn is

* checked by exhaustive testing.

_0-
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Adifferent graph theoretic approach, [2], proposed another method which ':

makes use of register transfer level description of microprocessors.

....

v Instructions are classified Into three types: transfer (T), manipulation (M) ,

and branch (B) A directed s-graph is derived based on the basic functional,

~~structural information and instructions set in which a node represents a .
-'

mae s fregister t heg erasnse eel srition of microton A eproesos

14: add the contents of and R and store the results in (M-class) ,
2 R

I9n : jump instruction ( s-class) i eoc

IT : stinnormato ainmemory using implied addressing (T-class)

R,: program counter
o

In, out: external memory at input/output devices

IN

4

1

9I

"" Figure 2

..

a2
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The microprocessor functions considered in this method are register

decoding, instruction decoding and control, data storage, data transfer, and

data manipulation. The faults specified for data storage and transfer functions

are conventional stuc~k-type faults. A valid test corresponds to the execution

*of a sequence of instrurtions which transfer complementary data patterns from

* the input port to the output port. The faults for register and instruction ....

decoding are failures to address the correct register or to execute the correct
%-%

instruction. Tests for these faults involve tracing the sequence of

instructions from input to output ports.

(b) Register Transfer Language (RTL) Technique

Using RTL, the behavior of a microprocessor is comprehensively described,

and functional faults derived from them can be studied. In (41, two approaches

focr functional testing are given based on the RTL description. The first

approach constructs a data graph from, the RTL description and uses the existing

algorithm such as the D-algorithm or path sensitizing method to generate the

.. .. •... . ..... . .... .... .. .. . .. b .

tests for functional faults. In the second approach, the symbolic simulations

teconique is used to denerate tests for detecting faults in the control signals.

In 5 , a formal definition of Rfo is defined as:

Rd slV sv ..

k: (t,c) R f(R,Rs2..*,Rsv), n

where,

k is the statement labelr

t is the timing and c is the condition to execute the statement

Rd is the destination register

Reco is the ith source register

i .i

'4 * . ..* ,\ p %tin from nputto otputport. ...v..
,. ~ ~~~ ind aunctoper aut dern e R ro siminb tde.I 4] w prahs--

10%[%
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4 represents data transfer

4" n represents a jump to statement n

For example, the following RT statement No. 17: (T5C8 ) R2
.R3+R5. 38 means that

when T5 = C8 = 1the sum of R and R5 will be stored in 7 and then the program

jumps to statement No. 38.

Based on the above notation, eight categories of fault can then be identified as

timing faults (t/t'), condition faults (c/c'), register decoding faults (Ri/Ri),

instruction decoding (function selection) faults (f/f), control faults

(n/n'), data storage faults ((Ri)/(Ri)), data transfer faults (4I/') and data

manipulation (function execution) faults ((f)/(f')). This set is functional

comprehensive because the behavior of a CPJ can be described by a sequence of

RTL statement. Three procedures for testing those five fault categories (except

timing, condition, and control faults) are derived. The testing requires the

creation of executable sequences to formn a "sensitizing" path which leads from a

faulty statement to a statement producing faulty output information. The R,

tacmique seems to be a promising approach for functional testing. We will

discuss this more in the next section.

(c) The Milicroprogram-Oriented Technique

'his technique functionally describes a microprocessor as a set of

microprograms derived from user available information [12]. The basic

information required includes: i.

1) The set of internal registers and functional units.

2) The set of instructicns and asynchronous control signals. .

3) The behavior of signals at external pins and internal operations at

each clock semicycle which can generally be derived from the timing

charts in the user manuals.

~"t.o. . .•
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Instruction cardinality is defined as the number of independent (subsequent)

*access to registers. In [ 12)1, it is shown that a necessary condition. f c the

nonambiguous error coverage of a particular, not directly observable,

* instruction is the existence of a testing sequence of instructions with lower

* cardinality. A complete test requires that all instructions with all addressing

* modes be included in the test sequences. The microprogram-oriented approach is

attractive because micro-instructions are basic to the operation of the control

unit and nearly all of the current new microprocessors are basically

microprogram controlled. Since the instruction decoder outputs a starting

address to the micro control store which subsequently performs a set of

micro-instructions corresponding to the incoming instruction, the length of the

startini address is a critical factor because it eventually deter-mines the

efficiency of the final test sequence. If one can genrate all thjie possible

combinations of the starting address patterns, all instructions executions will

tUe fully exercised. The sharing of micro-instructions among different

instructions evidently tends to redtrce th'e number of different starting

addresses.

.9..-

The above three testing approaches are proposed for testing

microproceors. Mext, as for large scale digital devices, the extension of the

)-algorithm suitable for functional level testing has been proposed [13,15. .

General computer hardware description language constructs (e.g., if-then-else,

case) and operators (e.g., addition) have been used to describe the behavior of -..

the general logic network. Fault model similar to stuck-type will be used and

the classical stuck-type testing technique can still be applied without major

changes. By building the basic unctional blocks from eleentary components, it

seems that modular composition and recursive extension can easily be applied

12
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' during tie procedure of testing which in turn may provide great flexibility in

adjusting the test strategy.

Memory devices have been tested for pattern sensitive faults £18]. The

functional testing of memory from the user's point of view is to apply a

sequence of "read" and "write" to check the storage function of each memory

element.

VI CGIPARISONS A14O DIFFIEZf APPROACHES

Each of the three different approaches in testing microprocessors described

in the previous section has its own individual advantages and shortcomings. A

brief comment on each is given below.

Several observations can be made about the method in [i]. First, its

coverage rests on the exhaustive testing of particular functions and memory
elements. Hence it is an ad hoc method and will be specific to the

- devices-under-test (e.g., MC6800). Moreover, it presumes a black box view of

t-e microprocessor in which each function is tested independently. These

factors lead to the tests of excessive length. But they have made a useful

contribution by devising a simple, rational scheme for ordering instructions

according to easiness level of controllability and observability.

The graph approach in £2] is attractive for several reasons: First, it is

based on the minimum, available information about the microprocessor (e.g.,
instruction and register sets). Second, microprocessor operations are

decomposed into a set of functions. For each function, a specific single fault

model is defined and a comprehensive test is rigorously derived. Third, the
a.

fault coverage was verified through a real stuck-type fault simulator which is
2 2 "

obviously very convincing. The estimated length of test sequences is O(n n2

where nR and nI are the number of registers and instructions respectively.

13
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To improve the computational efficiency, [8] proposed a simplified fault model

with revised test sequence length of O(nR * nl). The major shortcoming of this

approach is that it does not include partial execution of instruction and

control faults which can be provided by the RTL model.
The benefits of the RTL tecimique are its generality, clarity, and easy

understandability and precise description of the behavior of a given *digitl

system. Its major drawbacks are the difficulty in automatic generation of the

RTL description from the available information about the chi p-under-test, test

Seneration, and the fault coverage of the tests. The RL tectnique also

presents particular problems in fault localization. The RTL sequence does not

; iquely determine the way the microprocessor was implemented. Though RTL

descriptions provide a comprehensive approach to define functional faults, they
<*51.1.*

still are subjective to the problem of test complexity.

The microprogram-oriented approach is attractive because micro-instructions , %

are basic to the operation of the control unit. For control functions, much

saving in test length are possible for microprogrammed control laths. Like the

RTL technique, the automatic generation of the proper microcodes is still an

unsolved problem. The error coverage, though promising, remains to be proven.

Also, the nature of the control path architecture may make fault localization

pretty difficult [7,12].

VII CURP.NT TMOS "

Due to the small number of published research papers with solid results in .

this functional testing of LSI/VLSI devices field [6], and the increasing

demands of such kinds of techniques from industries, functional testing is still

one of the less-mature but most active areas in design automation (DA)

development and the quality control (QC) process [19].

14
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In this concluding section, we would like to point out briefly sone

importent topics which are either under active investigation or require more

work in the future.

As for the graph approach in [2], future improvements may include [2,81: -...

1) Extending the architectural model to incorporate the features of the

newer microprocessors. z...

2) Allowing for more general faults.

3) Generating tests for other microprocessors, e.g., bit-slice ones.

4) Design of a "compiler" to automatically transform the microprocessor

description (e.g., at RTL level) into the test program.

The RM techniques and microprogram-oriented technique need more work to

obtaixn complete test procedures and automatic generation and verification of

behavior description. Good techniques for measuring fault coverage are also

n:eeded in both approaches. Quantitative fault coverage measures, possibly by

computer simulation, are attractive for the demonstration of the

"" comprehensiveness of those approaches.

Furthermore, efficient algorithms should be developed for testing VLSI as

well as digital systems containing mixed logic (e.g., mixture of VLSI, LSI !SI,

and SSI integrated circuit chips). More w.ork still needs to be done in using a

hardware description language (HDL) to aid the generation of test at the

functional level. A solid, comprehensive definition of fault coverage in i
functional level and its practical measure should also be developed to give

criteria in 4udging the quality of the developed algorithms.

1%
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CHAPER2 Z-

New Algorithms for Testing '.

Instruction Decoding Function of Microprocessors

I. nMODUCTION

Recent advances in LSI/VLSI have resulted in an exponential growth of

the number of logic components in an integrated circuit (IC) chip. One such "

complex circuit is microprocessor. To ensure the reliable operations of

microprocessors, it is important to have these devices tested prior to their

use. Several researchers (1-6] have proposed different test procedures for |__

testing these devices. Some of the more important approaches are briefly

outliaed below.

Thatte and Abralmm [1,2] have made a significant contribution by

proposing a graph model for microprocessors and, on the basis of the graph

model, they developed test sequences to test a microprocessor. However, we

believe that this method does not make use of all the information that is

available to a user, as will become evident in the subsequent sections of this

report.

Nin and Su [3] have further reduced the test lengths for a number of

different classes of faults in microprocessors but they do not consider all

faults in the instruction decoding function (control unit). -. -'

Annartone and Sami [4] have proposed a method which relies on the

knowledge about micro-instructions associated with each instruction of a

microprocessor. The major limitation of the method is that some instructions

remain untested.

Parthasavathy, Reddy and Kuhl [5] proposed a testable design to make --
the control part of a microprocessor testable. Thus the major limitation of.

their method is that it is not applicable to existing off-the-shelf

microprocessors.
18
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In this report, we propose a method to test the instruction decoding

* function of a microprocessor. The method proposed here is a generalization of

the approach taken by Thatte and Abraham [2] and results in considerable

reduction in the size of test programs.

In Section II, we describe the key ideas used in deriving the .

algorithms stated in this report. In Section III, necessary notations are -

developed whicn are used in Section IV to derive and prove different algorithms

for testing microprocessors. Section V discusses the complexity of different

algorithms. We also consider the Intel 8080 microprocessor as an example and

compare the complexity of different algorithms for testing the instruction

decoding function of this microprocessor. In Section VI we present an algorithm "-'.

to detect a new class of faults and discuss its complexity. In Section VII we I-

briefly outline how a complete microprocessor can be tested.
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II. KEY IDEAS 
...

In this section, we describe the basic ideas used in this report to

derive the necessary algorithms. Our study of a number of papers in the area of

microprocessor testing [1-7] indicates that often the existing schemes have not

made use of all the information available to users. For example, almost all

microprocessor manufacturers provide a reasonable amount of timing information

about their products. In particular, information on instruction execution time

(in terms of the number of clock cycles) for each instruction is available to

ihe users. Such information for a microprocessor can also be measured using

simple test equipment. In the development of our first algorithm, we divide all

instructions into different sets using the information on instruction execution

time. The new objective, then, is to test instructions in different sets. Thus

a larger problem is solved using the "divide and conquer" strategy by solving

several smaller subproblems.

For the development of the second algoritm, we make use of Read and

Write signals. In this scheme, each instruction is associated with an ordered

Read-Write Sequence. This association is then used to divide the set of all

instructions into different partitions, and as before, this division 
can be used

to our advantage to solve the larger problem of testing all instructions. ".

In the last algorithm (Algorithm 3), we make use of both the above

information, i.e., the number of clock cycles and the Read-Write sequence

associated with each instruction to further subdivide the instruction set and

derive the necessary tests.

20
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In the following section, -de develop the notation which can be used to

~ divide the set of all instructions into different sets. Thus the concept of

- instruction execution time in terms of the numbers of clock cycles and -

Read-Write sequences is formally defined and functional notation is used to -

obtain the partitions of the set of all instructions.

0% 21



III. ASSUMTIONS AND NOTATION

In this section, we introduce the necessary notation and present the

fault model. This work is a generalization of that of Thatte and Abraham [21

therefore, the notation chosen is akin to that work. It is evident from the

previous work of different researchers [1-71, and also pointed out by Thatte

[6], the most complex and time consuming task of testing a microprocessor is

detecting instruction decoding faults. We, therefore, concentrate on reducing

the complexity of the test-set for detecting faults in the instruction decoding

function. The set of all instructions for a microprocessor is denoted by

I = 11 I 2 ,...Ii}. The type of faults which are assumed to take place in

instruction decoding function are as follows [2].

(i) I Fault : In the execution of an instruction 1,, no

activity takes place in the microprocessor.

(ii) 1 /1, Fault : i the execution of an instruction I, a

different instruction Ik is executed.
(iii) I /I +I Fault : LI the execution of an instruction I.,

.. k

two instructions I and Ik are executed and both instructions

are executed to completion.

Note tnat to verify that a fault Ij/Ik is not present we need only to

execute I and observe that Ij is executed correctly. Hoever, to assure that a

microprocessor, is free of fault I/I.+I we must verify the I is executed

correctly whereas I is not executed at all. Thus it is evident that the most

time consuming task is the detection of the third type of faults I /I +I as in

this case we need to consider all possible pairs [6].

22 . '-'5
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Thus the order of complexity for the test program is proportional to where

IL denotes the cardinality of set I. Since II=n, the order of complexity is
O(n2). We shall show that the size of test programs can be reduced considerably

by partitioning the instruction set.

The execution of a program involves the fetch and execute steps for an

instruction and then the next instruction fetch cycle begins. Let T(I.) be the ;7.-

number of clock cycles required for executing an instruction I (including its

fetch )hase) before the next instruction in the program is fetched. Notice that

this infornation is supplied by the manufacturers of microprocessors [8-11.
FDirtnermore, T(I ) for every Ij e I car, be measured for a given microprocessor.

't this stage, the following remarks are in order.

Remark 1: T(I.) is not the total time for fetching and execution, because for

cer-ai instruct-ions, the execution phase may overlap with the fetch phase of

the ne',t Instruction. Therefore, we have defined T(I.) to be the time for

executing Listruction I. before the next instruction is fetched.

Remark 2: For certain instructions, T(I) is a range instead of a unique

integer. Two examples are MUL (multiplication) and DIV (division) instructions

in Intal 8086 microprocessor. For simplicity, the following theorems and

algorittz= shall assume T(Ij) to be a unique integer. It is conceptually simple

and straightforviard to extend our results to microprocessors for which T(I ) is

a rage.

,'V"

23...



* . .-_,

%

Definition 1: FI is a function mapping I into the set of all integers,

Z (F1: I- Z), i.e., Fi(I )=T(I ), I eI.

Also, let k1  max T(I /VI I}.

Definition 2: Partition the set I into subsets I I2,...Ik as follows:

Ii  I and T (I ,}

* . Denote 1Ii =ni,siki.

Note that some such partitions can be empty.
"Ii

Remark 3: It is evident that Ut I 1
i= 1 . ' ..'

Remark 4: I is a partition (non-overlapping subset of instructions) if T(Ij)

is a single integer associated with I If T(I) is a range, the above method

may or may not result in partitions. However, with minor modifications, the

results of this paper will still apply.

We also observe that a read-write sequence (R-W Sequence) is associated

with every instruction. For example, in Intel 8080 [8] the instruction "MVI

(Move Immediate) da-a, M" consists of the following R-W sequence:

(i) The instruction is fetched - Read Cycle (R)

(ii) The data is read fro Memory-Red Cycle (R)

(iii) The date is written to the Memory-Write Cycle (W)

Thus an ordered R-W sequence, RRW, is associated with the instruction "MVI data,

4." Clearly, this sequence can be determined for every instruction.

Furthermore, it can be observed by monitoring the read/write control signals of -2
a microprocessor for a given instruction under execution. Some microprocessors

have even additional information, e.g., idle period which is not included here

to eep tie treatment general. In act, our study stugests that often more than

24
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simply read/write information is available for most microprocessors. This

concept is formally defined below.

Definition 3: A set be a set of ordered R-W sequences of length no .-

more than starting with R, written as % -{R(R,W)'; Oii<k2. For

* an element meS we denote the length of a as 94(a)
*12

Example 1: SI3{R}, Sz-{R,RR,RW},

S3 -tR,RR,RW,RFRR,RRW,RWR,RWJf, etc.

zg(RR) - 2, zg(RRW) - 3.

Definition 4: F2 is a function mapping I into Sk(F 2 : I-. ). for

some k2, i.e.,

F2(J ) = R-W sequence associated with I"

W R JW J2Rj3

where R is R repeated j, times. Clearly, k2 is equal to the length of

tle longest R-W sequence for some instruction.

Definition 5: Partition set I into subsets as follows: let S_ then

I jI./I. eI and F2 (I) = .

The number of such nonempty partitions is finite. In fact, an upper bound ".,*

on tre number of such partitions is 2 -1.

.
Z% ,
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~Xi, Y+y{R, W} and L1 2" We say

~~~(i) a&B if iY for .i£q

(ii) a-6 if a_8 and O-a

Example 2: (a) For a=RR, 8=RRW, a!$

* (b) For a=RW, 8.RWRR a8

(c) For =RW, O=RRWR Cr4.

Definition 7: Let f and is be two partitions induced by F2 . I is

covered by s , written as ZI 8 , if and only if a58.

s/.''

.VIM
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IV. THECRES AND ALGORITH4S
0 In this section, we state and prove some theorems and

- algorithms for testing faults in the instrution decoding function.

Lemma 1: If I cI and I eI then fork
WI / fault (I /I) =L

(ii) I/I +l k fault T(IjIJ+Ik) = max (i,z).

Proof:

(i) It is straightforward to see that if instruction Ik  is
executed instead of I. then

T(IIk) T(Ik)Jz.,-

9. (ii) If a fault Ij/Ij+Ik is present, then by our assumption on

faults both I and Ik must execute to completion. Therefore

T Ij+k) max(T(IJ ),T(Ik))

Corollary 1: It I. CI jIkEIand i# z then fault

A can be detected by executing I alone and observing T(I )

Lemma 2: If I.eI and i<z then fault I /I +I can be

detected by executing I alone and observing T(I ).

Proof: Clearly in the presence of fault I /I +Ik the observed value

T(Ij/I +Ik) = max(i,z)

-Thus T I i T(IjI j+I). -

Therefore, observed and expected values will be different in the presence of the

fault.

27
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Normally, to detect faults I/I/+I one would need to test for every pair .

[2,6]. However, the implication of the above lemma is that we need not

consider all pairs of instruction while testing the instruction decoding

function. Thus, in zhe following algorithm, we execute each instruction I and "

determine T(I.) then in the succeeding step we test for faults Ij/I I k, etc.,

using the partitions obtained in the previous section.

In Step 2 of the following algorithm, we do not present procedures to

generate subprograms to test for faults I/A, I Ijk and I/j 1+1k for given Ij

and Ik ' One could use the procedure by Thatte and Abraham [2] for generating "'V

subprograms. 
. ..

Algorithm 1: Algorithm to Detect Faults in Instruction Decoding Function

Using Function F.

Step 1: Execute an instruction I. and observe T(I for all ILEI.

Step 2: For i=1 to kic do

For all I,II

begin

(a) Test for fault 1 /0.

(b) Test for fault Ij/I

(c) Test for fault I /I +I

end

Fort :a to i-1 do

begin

(d) For all I test for fault I./I..+I

* end.

'a' end.

28



Theorem 1: Algorithm 1 detects all faults in the instruction decoding fiunction.

Proof: By Corollary 1 and Lema 2, all faults of the following types are

detected in Step 1.

(i) faults I /I~ with T(I3  OT(Ik)

and

(ii faults. I / s with TI)TI)

SStep 2(a) detects faults of type 1 /0.

Step 2(b) detects faults of type I /Ik with T(I )=T(Ik)

Step 2(c) detects faults of type I /I I with TI)TIk

-. Step 2(d) detects faults of type I /Ij +I with T(I )>T(Ik

Thus all faults are detected by Algorithm 1.

We 1Imow proceed to the development of second algorithm by making use of

R-W sequences. The following lemmas are established before the algorithm is

stated.

Lema3 If I~ eI' nd IkeI' then for fault I/.we have F2 (I /1k) 8

*Proof: Clearly, F 2(I 3 /I k) - F25Ik) - a

Corolary_2 I eIa anBe and c&8 then fault I /Ik can be detected by
~oo±ar : fj n IkeI3

executing I~ alone and observing F 2 (1 3 )

29-4
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SY ,...,Y,
22 3?-.

then mu 3 R(Y,. u + ...,YX su-RYXY3 9...'(,1' Y1

where u denotes set union.

Lemma 4: If Ila and Ie tIren for fault I /I +I
ke

F 2(I /1j+1k) = uL-

Proof: In the presence of fault I /I+I k , the ouserved R-W sequence will be a

union of R-W sequences for I and Ik  (Note: "Union" in this context does not

mean logical OR. Ti fact it only means that when both R and W signals are put

on tlie control line at the same instance, the associated control lines will have

the identical logical value. This is different from the situation where only "j'-

one of the two control signals is active.)

Corollary 3: If I.l and Ik l and Ia_10I then for fault I /I +Ik
j k iJzk

F2(lI /I +1k )

Lemma 5: Lat I Cl, I kel A fault I /I +Ik can be detected by executing I...%-

alone and observing F2(I provided either one of the following two conditions

is satisfied.

(a) zg(a)<tg(s)

(b) zg(a)tzg(a) and IB I',

where zg(a) denotes the length of Read-Write sequence a.

jh--'
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Proof: (a) From Lemma 4, F (I /I +I) * rus

- If'~~) sg8 then tg(aus) g)

T h e r f o r t g F ( / 1 + 1 ) t j F t

(b) I8Lf5 implies a~p

$$~a implies auO a'~

% ~Therefore F2(I /I +I a

Once again, the implication of the above result is that we need not consider all

pairs uf instructions while testing thie instruction decoding function. Thus we

obtain a second algorithm given below. As in Algorithm 1 we use the partitions

obtained in the previous sections to detect different faults in the instr~ction

decoding function.

r
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Usn Fucto F 2. . -

Stlporit ecut 2: A inortrutio Deec Faultoserin ntrhe RedWorite Feunctio

associated with Iji~. F (I) for all LeI.

Step 2: For every ae- do

begin

For all Ii. CI
k)

p begin

I,(a) Test for fault 1./0

(b) Test for fault Ij t /II
p. .P~pk

(c) Test for fault I /I +I~

end

For B~a do

begin

-. For all I S18 test for fault I /I +I
p tj -.

-. end

.1 end. .

Theorem 2: Algorithm 2 detects all faults in the instructionV decoding

f'unction.

Proof: The proof is similar to the proof of Thorem 1.

32
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We have stated two independent algorithms for testing the instruction decoding

function of a microprocessor. It is felt that the above two algorithms, if

merged, result in an algorithm which will perform better than either of the

above two algorithms. We will not state the necessary leamas but the basic

idea is as follows.

Each subset I i can be further partitioned into saller subsets by

defining function F2 from Ii to Si.-

We use Algorithm I to test faults in I and I classes. To test

instructions in I i for different faults, we can use Algorithm 2. Formal

statement of the algorithm is as follows:
- - -N..

Algoritm 3: Algorithm to Detect Faults in Instruction Decoding Function -

Using Functions F1 and F.

Step 1: Partition I into Subsets {Ii } using function F1 .

Step2: For i= to k do

begin

(a) Partition Ii into subsets {I} using function F2 and use

Algorithm 2 to detect faults in the instructions within each

subpartition.

(o) Use Algorithm 1 to detect the remaining faults.

S end.

The above algorithm can also be stated by interchanging the order of

application of F1 and F2 , i.e., in Step 1, F2 can be used to partition I and

then in Step 2, each partition obtained in Step 1 can be further subdivided

using Function F1 .

33
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* V. C~a4PlU=TY OF THE ALOORMh!4
In this section, we calculate the complexity of our algorithms and

compare our results with a well-known algorithm [2,6]. As our algorithm relies

on known methods of generating test subprograms, we first determine the length .

of such programs to compute the complexity of our algorithms.

Thatte and Abraham [2] have shown that the length of test programs is

determined by the tests which detect faults Ij 1 +1
k .  They also give

algoritnms to detect these faults. In their procedure one needs to consider

all possible pairs (Ij,Ik). As the number of such pairs is in the order. of n 2 ,
,.' ei

denoted by O(n2 ), the test complexity is O(n2 ). Let us assume that the actual

test size is c.n' where c is a constant of proportionality. As we propose to

use their algorithm for generating test programs for faults Ij/1+k, we need .

not know the value of c to determine the relative performance of our

algorit-ms.
4 .' '

The following theorems give the complexity of Algorithms 1 and 2.

Theorem 3: The complexity of Algorithm 1 is

0( r I Zit .1 jql

i=1 q=1

Proof: As stated above, the complexity is determined by the number of faults of

type Ij/I +Ik for which we need to test the pair (II k).

As is evident from Algorithm 1 and the associated lemmas, many such

pairs need not be considered. Only those pairs (IiJk) for which T(I T(I

need to be considered.

Using this argument it is a simple matter to obtin the required order

of complexity.
34
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Theorem 4: The complexcity of Algorithm 2 is

0(E E IIII)

Proof: The proof is similar to the proof of Theorem 3.

A similar expression for the complexity of Algorithm 3can be written.

As sucn an expression warrants only complex notation, it is not included

here. However, in the following example, we compute the complexity of all

three algorithms and compare the result with the complexity of Algorithm in

[2,6].

Example 3: Let us consider the Intel 8080 [8] microprocessor. For this

processor 111-172. In this processor, some of the instructions can be tested

independently out to keep the task of comparison simple, we assume that we

nee tocosidr al IjJ pars

(i) Using the algorithms by Thatte and Abraham [2], the size of the

% test program

TATP c.n 2

=C.(72)
2

5184 c.

(ii) Algorithm 1 results into different partitions as follows:

Let. us denote 111'1 as nj we then obtain

n1 =n3 3= = 14 4= 1 5=n

n 4 20, n5 =7, n6=-1, n7 =21, n 10 a13, n1 1 3

18 1

Zz n= inq 3137 *

q= 1

M~35



Therefore, the size of the te t program by Algorithm 1 is

AL1TP a 3137 c.

(iii) Algorithm 2 results into different partitions as shown below.

R R.R RW RRR* RRW* RW RRRR RRRW RRRRR RRRW

11I1 29 19 28 4 3 1 1 1 4I'l I I I OIIIL =2989

Therefore, the size of the test program by Algorithm 2 is

AL2TP 2989 c.

(iv) Algorithm 3 results in different partitionis as shown in the
following table.

Clocks%
R-W Seq. 4 5 6 7 10 11 13 16 18

R 20 7 1 1

RR 19

RW 2

RRR 7 1

RRW 4

RW 1 2

RRRR

RRRW 3 1

*IN and OUYT instructions have been included in RRR and RRW respectively to
keep the treatment simple.

36

V .1



AUP- 276 c.

hesofthe test program z by Algoith 30%

We have also considered other microprocessors, e.g., Intel 8085 [a],

8086 [91I, Motorola 6800 (10], ZBO (11] and found that ou~r partitioning methods

-. are applicable to these microprocessors and typical saving in the size of test

program is of the above order.
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VI. S)4MIC FAULT MODL

In previous sections, we have considered faults I /I+I k and

to be two distinct faults. However, if some information about the

design of the control unit is available, then some of the conditions on the

fault model can be modified.

For example, consider the microprogrammed implementations of a control

unit. In such an implementation of the control unit, a stuck-type fault will

aliays cause the execution of some micro-instructions, but a bridging fault

between two control signals will cause either both controls to be active or

inactive. Such a fault model is defined below.

Definition 9: A fault I /I.+I- is symmetric if the presence of fault I lI+I k  ez

implies the presence of fault Ik +Ik and vice versa. The following lemma and'k/1 j 1 k

theorems can be proved using similar arguments as in the previous two sections. . .%-

Lemma 6: If I CIi , IkeIz and itz then symmetric fault Ij I+I can be detected

by executing I and I and observing T(I and T(I

Proof: If i<z then execution of I will detect the fault whereas if i-z then

execution of I will detect such a fault.

In the case of symmetric faults, Algorithm 1 is modified by eliminating

Step 2(d); we shall call it Algorithm IM.

Theorem 5: Algorithm IM detects all symmetric faults in instruction decoding

function. ""m

Theorem 6: The complexity of Algorithm IM is ..

O( 1  il2)-

Analogous results can be obtained by using R-W sequences.

38d
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VII. CONCLUSION NO

In the previous sections, we have described algorithms to test the

instruction decoding function. To test a microprocessor completely, we can

adopt the following strategy.

(a) Register decoding function can be tested by using methods proposed in [21

and 31]. To detect faults in registers, test procedures identical to testing

semiconductors RAMs (12,131 can be used.

(b) For detecting faults in data paths procedures given in £2,3,6] can be used.

(c) AU) faults can be tested by complete tests derived for a given realization -d

or by random test sequences.

(d) Instruction decoding function faults can be detected by the algorithms

given in this paper, in conjunction with the algorithms given in [6]".

The algoritnms presented in this report are valid for a number of

Eicroprocessors we have considered 8-11]. In our treatment, we have used only

tne information which is common to all these microprocessors, thus for any given

microprocessor the actual complexity of the tests is likely to be even less than 5',,.

the complexity determined in this report.

Poo.

5=*. o,
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APPENDIX S
S *k

Report for Trip to Jordan and Israel, 1983.

Recently, I *as invited to give a paper entitled "Computer-aided Design

and Testing of Digital Systems and Circuits" at the Jordan International

Electrical and Electronic Conference which was held in Amman, Jordan April

25-28, 1983. The talk was very well received and various good comments were

* made by the attendees from all over the world. In this talk, I presented the

recent development and pointed out the future directiois in the important area

~.of computer-aided design and testing of digital systems. I also introduced our';;-

project sponsored by the Army, outlined the key ideas and obtined feedback from

" t e audience. Professor Sergio Brofferio of Politechric Di Milano, Milano,

Italy is so interested in this project that he invited me to go to his

d * institution to present in detail my research results and to discuss research
with their research group. Professor Broferrio's speciality is in the VLSI

area. We had a lot of discussions on the subject which enhances this Army 5'."

research project. He is also interested in the applications of VLSI in the area

of video conferences. His colleague, Professor M.G. Sami is working in the

testing of VLSI using microprogrammed approach. One of his recent publications

has been cited in this report. His work is pretty close to my project for the

Army. I plan to discuss VLSI testing with him in Italy.

2' I have also interacted with the following professionals. _

1) Dr. M. Maqusi, Dr. I. Zabalawi and Dr. M.K. Abdelazuz of the University

of Jordan.

2) R.C.V. Macario, College of Swansea, Swansea, United Kingdom.

3) Professor K.R. Rao, University of Texas at Arlington.

4) Professor L.C. Ludeman, New Mexico State University.
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" Mr. S.Y. Duda of the University of Cairo is doing research on the

applications of microprocessors. He hopes to come to SUNY-Blnghamton for his

graduate studies.

Since the scope of the conference was broad, it helped to enhance my

technical knowledge in various parts of electrical engineering. Perhaps the

idea of testing can be applied to other areas.

I was invited to visit the Computing Center of the University of Jordan" "

and give them some advice regarding the new computers which they want to""']["*"

purchase.

I was invited to give a talk at the Technion-Israel Institute of

Technology at Haifa, Israel. Technion is the finest University in Israel in the

area of Computer Science and Computer Engineering. The talk was entitled

"Testing of VLSI." The purpose of this talk was to report the research ideas

and results of my Army project and obtain some comments and suggestions. I also

had extensive discussions with Professor M1. Yoeli and Z. Kohavi. The follovi

comments and suggestions were made from them and the audiences of my talk. "
' •.

1) The idea of using RTL (Register Transfer Language) to describe the

behavior of the LSI/VLSI chips and borrowing the existing methods

for testing gate level networks to the RTL level is very interesting

and has a lot of potential in helping solve the difficult problems of

te sting VLSI.

2 2) The enumeration of all faults may be complex. The equi

classes for functional faults should be found first.
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3) Since the R1 description is not unique, how do we know the RTL

description corresponds to the actual circuit behavior?-.

4) Further research should be done in the area of effectiveness of test

generation algorithm, in terms of fault coverage and computing time. 
J1%

5) Comparison between symbolic simulation and date graph approaches

described in Su & Hsiech's paper "Testing Functional Faults in

Digital System Described by Register Transfer Language" will be

interesting and worthwhile.

6) The RTL description allows one to describe the behavior more closely . 4
than high level languages. The RTL model may be able to handle the .i .

fault for partial execution of an instruction which cannot be done by

the existing techniques.

I have had a great deal of interaction with M. Baba of West Bank, who

is interested in coming to SUNY-Binghamton to work on my Army research project.

I also interviewed V.G. Habesh and AreeJ E1-Majed, the other two applicants for .

this project.

Overall, the trip was very worthwhile and beneficial to the project... "

Suggestions were very helpful for the future progress on this project.

n--o
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